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Abstract  1 

We present a method to automatically measure fish from images taken using a stereo-camera 2 

system installed in a large trawl (CamTrawl). Different visibility and fish density conditions 3 

were evaluated to establish accuracy and precision of image-based length estimates when 4 

compared with physical length measurements. The automated image-based length estimates 5 

compared well with the trawl catch values and were comparable with manual image processing 6 

in good visibility conditions. Greatest agreement with trawl catch occurred when fish were 7 

within 20° of fully lateral presentation to the cameras, and within 150 cm of the cameras. High 8 

turbidity caused substantial over- and underestimates of length composition, and a greater 9 

number of incompletely extracted fish outlines. Multiple estimates of individual fish lengths 10 

showed a mean coefficient of variation (CV) of 3% in good visibility conditions. The agreement 11 

between manual and automated fish measurement estimates were not correlated with fish length 12 

or range from the camera (r2 = 0 – 0.08). Implementation of these methods can result in a large 13 

increase in survey efficiency, given the effort required to process the trawl catch.  14 

  15 



2 

 

1. Introduction  16 

Cameras are an increasingly important tool for surveying marine living resources, and provide a 17 

non-extractive method of estimating fish abundance and demographic composition (Mallet and 18 

Pelletier., 2014). Image–based sampling provides many advantages compared to traditional catch 19 

sampling methods used on trawl surveys including higher spatial resolution, non-lethal 20 

observations, and removing the physical requirements for scientific sampling. A primary 21 

limitation of these methods, however, is the human and time resources required to extract 22 

accurate data from images. Two technological advancements increasingly applied to underwater 23 

visual surveys are making image-based sampling a viable method for survey work: 1) the use of 24 

stereo-imagery for precise  measurement (Harvey et al., 2003; Gibson et al., 2009), and 2) the 25 

development of automated  image processing techniques that can substantially reduce processing 26 

effort (Edgington et al., 2006; Shortis et al., 2013).  27 

Automated image processing is a rapidly growing research field with wide ranging applications 28 

such as security monitoring, automated vehicle driving, and medical imaging (Sonka et al., 29 

2014). A recent  proliferation of computer algorithms for image processing have allowed for the 30 

development of  automated software routines to reduce, and possibly remove, the cost of 31 

extracting scientific  information from images (MacLeod et al, 2010). Underwater imagery has 32 

special challenges for processing, such as contrast loss with reduced water clarity, and greater 33 

absorption of higher frequencies in the visual spectrum reducing color information for color 34 

imaging Singh et al., 2015). The development of analytical methods is especially critical for 35 

practical implementation of camera systems to supplement or replace traditional survey methods, 36 

as typically there is substantial additional labor costs needed for image analysis.  37 
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The use of stereo cameras for precise manual length estimation has been well established in 38 

underwater image-based surveying with a variety of deployment platforms (Dunbrack, 2006; 39 

Watson et al., 2010; Rosen et al., 2013). Processing stereo camera images has been partially 40 

automated for determining fish lengths and mass estimations (Costa et al., 2006, Lines et al., 41 

2001). Automated routines for underwater stereo-image processing can include a range of 42 

techniques including target location, segmentation (Tillett et al., 2000), shape and feature 43 

identification, and length measurements (Costa et al., 2006), but most automated algorithms that 44 

have been implemented are preliminary or experimental, and have not been incorporated into 45 

routine survey operations.  46 

A critical component for the use of image-derived length data is quantifying the uncertainty 47 

associated with these estimates, and the conditions that influence that uncertainty (Harvey et al., 48 

2010a; Williams et al., 2010b). Several factors that need more study to quantify uncertainty 49 

associated with length estimation are image resolution, influence of the camera to target range, 50 

stereo calibration accuracy and camera baseline separation, fish target density, and water clarity. 51 

It is important to understand the accuracy and reliability of the automated algorithm used in fish 52 

length estimation in the context of these factors.  53 

An underwater stereo camera system (CamTrawl) has been developed by scientists at the 54 

National Oceanic and Atmospheric Administration’s (NOAA) Alaska Fisheries Science Center 55 

(AFSC) for image-based fish sampling of midwater fish species as a compliment to standard 56 

trawl catch processing during acoustic-trawl surveys. The camera system is attached to the aft 57 

portion of a midwater trawl and captures images as the fishes pass through the net into the 58 

codend (Williams  et al., 2010a). These data provide a unique opportunity to assess the precision 59 
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and accuracy of image-based sampling, as image-based estimates can be directly compared with 60 

physical catch data on a trawl by trawl basis.  61 

The routine use of CamTrawl during trawling operations results in millions of image-pairs. 62 

Time-consuming manual image-based length estimates do not provide sufficient efficiency 63 

advantages over direct physical measurements from the catch. While the development of an 64 

automated image analysis process also has substantial initial costs in terms of required personnel 65 

expertise and development time, the gains of automation can be expected to be realized in the 66 

long term, potentially as soon as a few sample collection seasons.  Thus, the usefulness and 67 

practicality of CamTrawl is dependent on the successful development of automated image- 68 

processing software. This paper presents a field-ready automated technique with established 69 

precision and accuracy for the fish length estimates. It can be used to augment or replace current 70 

survey sampling practices, resulting in greater survey efficiency and abundance estimation 71 

accuracy.  72 

 73 

2. Materials and Methods  74 

2.1.CamTrawl hardware and image acquisition  75 

The camera system consisted of a pair of solid state industrial grade high-resolution, high 76 

sensitivity machine vision cameras (JAI RM4200 GE) with an electronic global shutter. The  77 

cameras were mounted 28 cm apart on a rigid frame attached to the side of a midwater trawl near  78 

the codend, and captured lateral images of pollock as they passed though the trawl toward the  79 

codend. Images were recorded at depth using a small form factor computer. Illumination was 80 

achieved using light-emitting (LED) strobes. Further details of the camera system can be found 81 

in Williams et al. (2010a). Data format consisted of 2048 × 2048 pixel 8-bit monochrome  82 
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images compressed using the jpeg standard. Images were collected at a rate of 4 Hz, with an 83 

exposure of 1.5 ms. The imaging chamber where the camera was attached had a square cross-84 

section formed by rigid crossbars mounted to the outside of the trawl, with each side measuring  85 

approximately 1.5 m (Fig. 1). The trawl panel opposite of the camera was covered with a black 86 

fabric to provide a uniform background to aid in automated processing of the image data.  87 

 88 

 89 

Figure 1. CamTrawl system description.  Upper panel shows the cross section of the CamTrawl 90 

imaging chamber. The camera was attached to a 4-seam midwater trawl near the codend.   The 91 

camera cage was attached to the port panel, with the trawl mesh removed from the panel to allow 92 

viewing of the passing fish.  Rigid poles were mounted to the outside of the trawl to form a 93 

rectangular image chamber.  A black tarp was mounted to the trawl panel opposite of the camera 94 

to provide a uniform background for image analysis.   95 

 96 

2.2. Image data and analysis overview  97 
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Automated target detection and measurement from stereo optical images requires several steps. 98 

The initial step consists of target segmentation, where targets of interest are separated from the 99 

background. If fish targets are found in the left camera, the right image is segmented and 100 

corresponding individuals in the synchronous image pairs are matched using a process termed 101 

stereo-correspondence (Shapiro and Stockman, 2001). Fish lengths are subsequently estimated 102 

using stereo-triangulation, a process of reconstructing 3D positions of objects using the 103 

corresponding image points. All computations were performed using scripts written in the 104 

Matlab® computing language and were run on a standard desktop computer (Intel® Core i7 64-105 

bit processor).  106 

Three image data sets were analyzed from three trawl hauls taken during a single survey, each 107 

representing a unique set of challenges for automated length estimation (Fig. 2). The first set 108 

consisted of low densities of large pollock encountered in very clear water. The second set 109 

featured two distinct size modes of pollock encountered separately during the trawl haul, with 110 

the smaller fish occurring in high density and good visibility throughout the haul. The last set 111 

contained a high density of large fish imaged under poor visibility conditions due to high 112 

turbidity and a high density of krill in the images.  113 

 114 
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Figure 2. Data sets used for automated fish measurement. The data set 1 contained adult (30 – 40 115 

cm) walleye pollock in low density and good visibility, the data set 2 contained a mixture of 116 

juvenile (<20 cm) and adult pollock with good visibility, and data set 3 contained high density of 117 

adult pollock in poor visibility with krill. 118 

 119 

The catches consisted almost entirely of walleye pollock (Gadus chalcogrammus) by number in 120 

the first and third haul (99.0 and 99.5%, respectively). A significant proportion (60.6%) of the 121 

second haul consisted of eulachon (Thaleichthys pacificus). The eulachon were caught while the 122 

trawl was in deeper water based on the image data, so these data were excluded from the 123 

analysis, leaving only image data containing > 95% pollock targets.  124 

 125 

2.3. Physical catch sampling  126 

Trawl catches from the three trawl hauls used in this study were sorted to species and ~300 127 

pollock from each haul were measured for length to the nearest 1.0 cm. When juvenile pollock 128 

co-occurred with adult pollock in the catch, juveniles were sampled separately and then merged 129 

with adult measurements to increase the precision of the length frequency estimate (Honkalehto 130 

and McCarthy, 2015).  131 

 132 

2.4. Stereo calibration  133 

Stereo analysis of image data requires that any distortions imposed by the camera optics be 134 

corrected and that the inter-camera geometry is known. To estimate these parameters, a set of 20  135 

image pairs of a checkerboard pattern of known grid-cell dimensions was collected underwater 136 

and analyzed  using a camera calibration software toolbox written in the Matlab® computing 137 
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language (Bouguet, 2008) as described by in Williams et al., 2010b. First, the lens distortion 138 

coefficients are estimated for each camera, allowing the pixel coordinates for the checkerboard 139 

intersection points to be corrected to correspond to a rectilinear lens (undistorted) view. The 140 

corrected left and right image pixel coordinates for intersection points (with known physical 141 

inter-point distances on the checkerboard) are then used to iteratively solve for the  142 

translation (offset in space, or right camera relative to left) and rotation matrices (difference  143 

between left and right camera “aim” or central optical axes). The individual camera distortion 144 

coefficients and the translation and rotation matrices are then used to derive the 3D position 145 

coordinates of any fish targets simultaneously viewed by both cameras.  146 

 147 

2.5. Segmentation  148 

As images are collected inside the trawl during fishing, there are many images that do not 149 

contain fish and are relatively static from frame to frame, such as webbing and other trawl 150 

structural elements. These images are not needed in the subsequent analysis. These components 151 

are jointly considered the image background and are masked out of all images using a process 152 

called background subtraction. The components remaining after background masking are 153 

collectively referred to as the image foreground, containing the targets of interest. For this 154 

analysis step, images were down-sampled to a resolution of 512×512 pixels, greatly enhancing  155 

performance without adversely affecting the analysis outcome based on a comparison of results  156 

of analyses conducted at resolutions of 2048×2048 (original capture resolution), 1024×1024, and  157 

512×512. At the latter resolution, most adult fish had pixel lengths of 80-100, while juveniles 158 

were between 15 and 30 pixels in length. Background subtraction was achieved using a median-159 

based model (McFarlane and Schofield, 1995), which continually updates the background 160 
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“image” from the static elements in the image as the analysis proceeds sequentially through the 161 

image frames (Fig 3b). A pixel intensity threshold was applied to the difference between the 162 

image being processed and the background image, resulting in a binary background “mask”. This 163 

mask identifying foreground objects is analyzed for contiguous pixel regions using a four-sided 164 

connected components algorithm (Haralick, 1981), with each region receiving a separate label.   165 

Labeled areas are filtered to remove small objects that are not likely to be targets of interest, such 166 

as small organisms (< 5 cm) and trawl netting (Fig. 3c).  167 

The basic dimensions of the remaining regions were estimated by conducting a regression 168 

analysis to rotate the data by the object major axis. Object length and height then corresponded 169 

to the pixel range along the horizontal and vertical dimensions. Targets whose aspect ratio 170 

(object length / object height) did not fall within a range of 3 and 7.5 were not used. In addition, 171 

objects with low occupancy ratio (< 35%), computed as the object area divided by the product of 172 

the length and height, were considered to be unlikely to be fish and removed from further 173 

analysis. This filtering effort effectively reduced many partially occluded targets, fish that were 174 

overlapping, and targets that were not fish (e.g., jellyfish). In addition, targets occurring in the 175 

upper and lower portions (~ 40 % of the vertical image extent, combined) of the images were  176 

difficult to fully separate from trawl netting, so targets from these areas were excluded from the  177 

analysis. The endpoints of each target were estimated by taking the extreme points along the 178 

major axis. Segmentation was performed on the left image only and is shown in Figure 3.  179 
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 180 

Figure 3.  Example of the segmentation process for extracting fish targets from images. The raw 181 

image (a) is down sampled from 2048×2048 to 512×512 and the background is subtracted (b). 182 

Then a threshold is applied, contiguous regions identified and labeled, and candidate regions 183 

filtered for size and aspect ratio (c).  Remaining regions then have the endpoints identified for 184 

length estimation. 185 

 186 

2.6. Stereo correspondence (object matching)  187 

A stereo correspondence technique has been implemented to match fish viewed in the left and 188 

right frames. Original resolution images (2048×2048) were used for this analysis step to provide 189 

maximum information content on matching targets. Epipolar geometry techniques (Hartley and 190 

Zisserman, 2003) were used to estimate the epipolar line, which constrains the location of an 191 

object seen in the left image to a line in the right image (Fig. 4). The exact position of the object 192 

along the epipolar line defines the range at which the object is located from the left camera. The 193 

endpoints of the target in the left image were used as starting points to locate the equivalent  194 

target in the right frame. Matching was done using a modified block match approach commonly 195 

used in stereo-image depth mapping (Lu and Liou, 1997). A block of pixels from the left image 196 

centered on the point of interest was compared to a candidate block of the same size from the 197 
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right image, with candidate points being placed at regular intervals along the epipolar line, 198 

limited by the expected range limits within the image chamber (i.e., 50 – 190 cm from the 199 

camera). The size of the square block was matched to the target size, computed as 1/3 of the 200 

pixel distance between the target end points. The point with the highest Pearson correlation of 201 

pixel values from the test and candidate blocks would then represent the stereo-correspondence 202 

point, or equivalent object in the right image. By block matching both target endpoints 203 

simultaneously, computation time was reduced and the matches were made more robust by 204 

evaluating the combined correlation score for both points. Once a best match was found, a 205 

secondary, finer scale, localized block match with smaller inter-block intervals was performed 206 

independently to the fish snout and tail to enhance the correspondence. A minimum correlation 207 

score of 0.6 was required for a match to be accepted, reducing the probability of incorrect 208 

matches.  209 

 210 

Figure 4.  Stereo object correspondence using a modified block-match method. The left image 211 

endpoints are used to derive epipolar lines on the right image (dotted lines).  The corresponding 212 
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points along the epipolar lines (arrows) are found by sequential correlation between reference 213 

sub-image blocks in the left image (white squares) and 50 equivalent evaluation blocks taken 214 

along the epipolar line.  The blocks with the highest correlation score shown in the line chart are 215 

taken as the corresponding target endpoints in the right image. 216 

 217 

2.7. Length estimation  218 

To estimate the length of each target, the matched fish endpoint pixel coordinates (e.g., tip of the 219 

snout and end of the centerline of the tail) from both images were transformed into 3D points 220 

using a stereo triangulation function (Bouguet, 2008). Two length estimates were made: the first 221 

was a straight line Cartesian distance between the target endpoints, and the second was a sum of 222 

three contiguous linear segments defined by two additional points along the fish body center line 223 

to account for body curvature (Fig. 5). The angle of the fish body relative to the camera in the 224 

planar view (y axis in 3-D projection), or the deviation from orthogonal position, was computed 225 

by estimating the angle defined by the points (xt,yt),  (xs,ys), and (xt, ys), where xt and yt are the x 226 

and y position of the fish tail in 3D coordinates (z is not used for this computation), and xs, and 227 

ys are the same for the snout. 228 

To distinguish between errors inherent in the  stereoscopic method and errors in automatic 229 

estimates of fish end points and matching between  left and right views, manual image-based 230 

lengths were taken for a randomly selected subset (n =  300) of targets in each dataset. This step 231 

involved manually estimating the pixel coordinates of the snout and tail of corresponding fish 232 

targets in the left and right views using a manual stereo- analysis software package (Williams et 233 

al., 2016).  Manual analysis package allowed for a close-up view of the snout and tail to 234 

minimize errors in user inputs. 235 
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 236 

Figure 5.  Length estimation was conducted as a 3D straight line-distance between fish endpoints 237 

(1 and 4) and alternatively as a sum of the three linear segments representing the centerline 238 

length of the fish to account for curvature. 239 

 240 

2.8. Target tracking  241 

Individual fish were often encountered over several frames as they passed through the imaging 242 

chamber toward the codend. To estimate the true fish passage rates and the precision of multiple 243 

measurements on the same individual, several hundred sequential images were manually 244 

analyzed by tracking individuals across frames. Fish were tracked only in the left camera images 245 

using a purpose-made program that allowed previous frame fish positions to be overlaid onto the 246 

image data to aid visual tracking.  247 

 248 

3. Results  249 

3.1. General results 250 

Basic descriptions of each data set and general results from the analysis are given in Table 1.  251 

The first set with a lower density of large pollock and good water clarity, resulted in a high 252 

degree of agreement in mean fish length estimates. Only 15% of automatically acquired targets 253 

were used for length estimation in this data set (targets in analysis / total targets). This low value 254 

resulted from the restriction of the analysis area to the central portion of the image containing the 255 
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backdrop, filtering for favorable fish orientation, as well as filtering out occluded targets and 256 

false detections (non-fish objects). A higher level of target filtering was required in the second  257 

Data set, with only 10% of targets used for lengthing. The last data set resulted in poor 258 

performance with a > 6 cm difference in mean length, and a comparable level of target retention 259 

as the previous sets (11%). Mean processing time per frame was 0.4 s, meaning it took 260 

approximately 60% longer to process than to collect the data. The third data set required 261 

substantially longer per frame to process due to the higher density.  262 

 263 

3.2. Length Frequency Comparison  264 

A comparison of image and catch-based length estimates shows good general agreement in the 265 

first two datasets, while the third data set shows substantial over- and underestimates of size 266 

from images (Fig. 6). Manual image-based measurements did not substantially differ from 267 

automated methods in the first data set. However, in the second data set, the juvenile size mode  268 

Table 1. Summary of characteristics and analysis results for the three image and catch data sets 269 

compared for performance of automated image-based length estimation. Manual count of fish in 270 

image frames included the entire image area, whereas the automated analysis was restricted to 271 

the central portion (60%) of the image.  272 

Data 

set 

Pollock 

caught 

by 

trawl 

Mean 

fish 

size 

(catch) 

Mean 

fish size 

(images) 

Frames 

analyzed 

Analysis 

time 

(min)* 

Raw 

targets 

(left 

camera) 

Targets in 

analysis 

(both 

cameras) 

Mean 

targets / 

frame 

(manual) 

Measured 

targets / 

frame 

(automated) 

Number 

of fish / 

minute 

Mean 

track 

length 

1 1348 45.92 45.91 4800 25.53 2605 389 1.93 0.17 76.7 6.01 

2 1856 23.59 19.61 4500 22.76 17221 1754 4.22 0.55 187.59 5.38 

3 4128 37.81 31.43 5000 45.82 26788 2936 4.20 0.10 148.85 6.76 

* based on a computer with a Intel Core i7 processor 273 

 274 
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was shifted by 1-2 cm in automated measurements (i.e., see FL ~18-21 cm), indicating a 275 

tendency of this method to overestimate length for this size group. While manual image-based 276 

measurements were more consistent with the catch estimates in the third dataset, a substantial 277 

number of fishes > 45 cm encountered in the catch were not proportionally represented in the 278 

image-based lengths. The linear distance estimate was virtually identical to the curved approach, 279 

indicating that fish curvature does not play a large role in potential image-based length 280 

estimation errors in these data.  281 

 282 

Figure 6.  Results comparing the catch-derived length composition of walleye pollock with 283 

manual stereo-image based measurements and linear and curved methods of automated length 284 

estimation.  The lower panel shows the signed difference between catch-based length and the 285 

image-based methods for each 2 cm length class.  286 

 287 

A quantitative comparison of the length frequencies was made by looking at the mean absolute 288 

error (MAE) between frequencies for each 2 cm length class (Fig. 7). The MAE values clearly 289 
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show the small differences in linear and curved automated methods. For the first two sets, 290 

manual image-based measurements do not appear to outperform the automated method. As 291 

expected, higher errors were observed in set 3 with both manual and automated image-based 292 

methods.  293 

 294 

Figure 7.  The mean absolute error (MAE) from manual stereo-image based measurements and 295 

linear and curved methods of automated length estimation relative to catch based length 296 

composition. 297 

 298 

3.3. Range and angle dependency  299 

The accuracy of the automated image-based length estimates, compared to catch-based lengths, 300 

was examined as a function of target orientation and range relative to the camera. In the first two 301 

data sets, automated length estimates were more consistent with the catch-based lengths for  302 

targets that were oriented within 20 degrees of orthogonal to the camera axis (those 303 

approximating a lateral view in the images), especially in data set 2 (Fig. 8a). Catch- and image- 304 

based estimates exhibited poorer agreement for data set 3. This set also exhibited a much wider 305 

distribution of horizontal angle estimates. This increased variability likely results from errors in 306 
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locating corresponding end points for targets due to the low visibility, as well as actual increased 307 

variability in horizontal position likely due to reduced ability of the fish to see (Olla et al., 2000) 308 

the trawl in water that had reduced clarity compared to the other data sets. Greater agreement 309 

with catch data was observed with all data sets (Fig. 8b) when only targets closer than 150 cm to 310 

the camera were used, with substantial improvements to data sets 1 and 3.  311 

 312 

Figure 8. The upper panel (a) represents the frequency distribution of fish horizontal angles 313 

(yaw) relative to the camera, with the shaded bars showing the central +/- 20 degree band.  The 314 
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lower panel (b) shows the distribution of estimated individual fish distances from the camera, 315 

with the shaded bars highlighting the portion of the distribution < 150 cm.  The maximum extent 316 

of the range possible in the image chamber was 190 cm.  The differences in MAE between these 317 

two categories is given below the histograms. 318 

 319 

3.4. Automated versus manual stereoscopic measurements  320 

A more detailed analysis compared target-specific differences between the manual and 321 

automated image-based measurements. While data sets 1 and 2 indicated approximately normal 322 

errors (standard deviation ~ 2 cm) and little bias in automated methods, the third set shows 323 

greater error and a tendency for automated methods to over-estimate fish sizes (Fig. 9).  324 

Errors were not strongly related to the size of fish, or with range, although the tendency for large 325 

positive overestimates (>10 cm) of the automated method appeared more prevalent with range in 326 

data set 3.  327 
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 328 

Figure 9.  Comparison of manual image-based measurements derived by clicking on the head 329 

and tail of corresponding fish in stereo-image pairs and the automated measurements derived for 330 

individual fish (n= 300 per data set).  The upper panel shows the error distribution (manual-331 

automated), and the lower panels show the correlation of error with fish length, and range from 332 

the camera, respectively. 333 

 334 

3.5. Automated target assessment  335 

A visual review of the automatically detected targets (n = 200) was conducted to determine the 336 

frequency of specific errors in detection across the different data sets. The majority of targets in 337 

data sets 1 and 2 appeared to be valid; that is, the targets consisted of a single individual, with 338 
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straight bodies, and were fully segmented in both left and right views, and thus suitable for 339 

making accurate length estimates (Fig. 10). Most of the automatically detected targets in data set 340 

3 were classified as incomplete, meaning that segmentation failed to capture the entire fish body 341 

in one or both views segment the entire fish, with the fish tail missing in most cases. A higher 342 

number of segmentation errors involving multiple targets overlapping due to higher target 343 

densities in the frame occurred in data sets 2 and 3. However, less than 7% of targets were seen 344 

in a curved position, and less than 3% were non-pollock fish or trawl objects in all three data 345 

sets.  346 

 347 

Figure 10.  Frequency of observation of different categorizations of walleye pollock 348 

automatically detected targets across three image data sets.  The categories are abbreviated 349 

accordingly: VLD = valid, fully segmented individual pollock targets presented with little 350 

curvature, INC = incompletely segmented pollock targets, MLT = multiple targets detected as 351 

one, CUR = pollock showing substantial body curvature, and NOP  = non pollock targets. 352 

 353 

3.6. Error in repeat measurements  354 
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Manual tracking of individuals allowed for an evaluation in the consistency in repeated length 355 

estimates for the same individual seen in several image frames. Most of the repeat measurements 356 

fell within 10% of the mean length, with increased variability observed in data set 3 (Fig. 11). 357 

Specifically, data set 3 had a median CV of 10 %, with a substantial number of individuals  358 

varying by >30% between measurements. Mean track lengths were greatest for this data set 359 

(Table 1), meaning that the individual target length CVs were based on larger sample sizes.  360 

 361 

one, CUR = pollock showing substantial body curvature, and NOP  = non pollock targets. 362 

Figure 11.  Frequency histogram of the coefficient of variance (CV) derived from multiple 363 

automated measurements of individual pollock in three image data sets.  Measurements were 364 

aggregated using manual tracking of individuals across frames. 365 

 366 

4. Discussion 367 

This study demonstrates that length frequencies automatically extracted from stereo-camera 368 

image pairs can provide sufficiently accurate results when compared with traditional catch 369 
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sampling under certain conditions. Image-based length composition data, while containing more 370 

errors than physical measurements, did not deviate substantially from the catch length frequency 371 

modal lengths or in estimates of presence and relative proportion of length classes when optical 372 

conditions were good. In addition, the automated method compared very well with manual 373 

stereo-image processing, the latter which is used extensively in fisheries image-based surveys for 374 

fish sizing (e.g., Cappo et al, 2006; Williams et al., 2010b).  Manual processing outperformed the 375 

automated method in poor visibility/high density situations, suggesting that human visual acuity 376 

still outperforms the ability of automated processing in challenging conditions. Further algorithm 377 

development is needed to close this gap.  378 

The component algorithms used in this study are standard, well-established methods slightly 379 

customized for specific features of the image data used in this study. The primary contribution of 380 

this work is not in the technical sophistication of these components, but in the synthesis of an 381 

operational pathway for field use, which includes attention to quantification of the different 382 

sources of uncertainty in the process. The general framework of the image-processing operations 383 

could be applied to other stereo-camera platforms, with additional tuning or substitution of 384 

component algorithms where necessary. For example, segmentation of targets in CamTrawl data 385 

was fairly simplistic, as the fish pass by a uniform mostly static background that presents  386 

sufficient contrast to easily isolate individual fish outlines. To achieve quality segmentation in 387 

situations where the background consists of natural benthic habitat that is not static and may be 388 

heavily patterned, a more sophisticated algorithm will be required to extract the targets. Once 389 

that step is achieved, however, many of the subsequent steps presented in this study, including 390 

stereo-matching and length estimation, could be expected to perform well.  391 
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The CamTrawl dataset provides a unique opportunity compared with most other image-based 392 

assessment field work, as catch data are readily available to directly validate the image-based 393 

size and species compositions. These comparisons have to be made on an aggregate basis as 394 

opposed to a one-to-one comparison with physical measurements that have been conducted in 395 

the aquaculture setting (Harvey et al., 2003). However, the assessment of the accuracy and 396 

precision of length measurements are critical for the successful implementation of this approach 397 

into abundance estimation surveys. As expected, repeated image-based measurements from 398 

tracked targets revealed higher variability under good measurement conditions (CV ~ 3%) than 399 

would be expected from physical measurements using an electronic fish length board (CV ~ 400 

0.5%, personal comm., Rick Towler, AFSC), indicating relatively lower precision for this 401 

method. Although repeated measurement results for this study are more variable than similar 402 

manual stereo-video measurements made on captive bluefin tuna in a controlled environment 403 

(CV  = 0.21%, Harvey et al., 2003), results from the present study compare well with in situ 404 

rockfish  measurements (CV = 5.85 %, Williams at al., 2010b).  405 

Stereo-camera data allows independent ranging of both ends of a fish target, removing the need 406 

for assumptions about fish orientation such as are required when using parallel laser systems 407 

(Dunlop et al., 2015). Despite the potential for getting length from fish in a variety of angular 408 

positions relative to the camera, best results for the present study were achieved when the data  409 

were restricted to fish orientations +\- 20 degrees from normal (Fig 8a). Similarly, fish on the far 410 

end of the sampling space (>150 cm) introduced more error into the estimates, showing the 411 

limitations of accuracy at increasing ranges. Both of these factors present challenges for towed or 412 

ROV/AUV based camera platforms where fish behavior can affect both orientation and range 413 

(Stoner et al., 2008).  414 
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This study revealed the limitations of using automated image processing in certain situations, 415 

such as encountered in data set 3, namely high turbidity/reduced water clarity and high density of 416 

fish. Of these two challenges, the former presents a more difficult situation, as seen by the 417 

number of incompletely imaged animals in the target review (Fig. 10). Additional image pre-418 

processing may be able to greatly improve performance in these conditions however, as similar 419 

challenges occurring in terrestrial imagery have been studies (Watkins et al., 2000) High density 420 

has the primary effect of limiting the number of acceptable targets; for example, fish that are not 421 

overlapping with or occluded by others in both images. The results of this study were heavily 422 

influenced by the selection of targets for length estimation. While the manual image-based 423 

measurement approach would be better suited to extracting lengths for all fish encountered, 424 

subsampling of targets may be essential for achieving reliable and usable results using automated 425 

methods. However, automated methods are not well poised to properly analyze occluded and 426 

overlapping fish targets at this time.  427 

Future additions to the automated processing workflow include implementation of automated 428 

target tracking specifically developed for low frame rate situations (Chuang et al., 2015), which 429 

will allow for higher precision to be achieved by averaging multiple measurements (Harvey et  430 

al., 2003). Automated species classification (Chuang et al., 2014) will also enable species-431 

specific length compositions to be determined, expanding the usefulness of the CamTrawl 432 

automated lengthing to catches with greater catch diversity.  433 

Implementation of image-based length data into survey abundance analyses will also require a 434 

thorough understanding of how measurement errors will affect uncertainty in population 435 

abundance and size structure. As with all new approaches to data collection, it is critical to 436 

reduce the risks of methodological biases, potentially derived by non-random effects of the 437 
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stereo analysis or automated image processing methods. Even randomly distributed length 438 

measurement errors can have non-random effects on quantities derived from length estimates, 439 

such as biomass estimates using non-linear length-weight relationships. In the case of the  440 

CamTrawl system, these effects can be directly estimated by comparing survey abundance 441 

estimates derived from catch- and image-based length measurements.  442 

In conclusion, this study shows the potential benefits of using automated methods for measuring 443 

fish from stereo methods, which can yield substantially greater efficiency compared with 444 

traditional physical or manual image-based sampling. Satisfactory results can often be achieved 445 

using basic image analysis algorithms, especially where the image data are collected in 446 

controlled or semi-controlled environments. In our case, this was within a large trawl. In some 447 

situations, some level of human intervention may be necessary, such as poor visibility conditions 448 

or less controlled environments. The analytical process here represents an operational system 449 

that is field ready, and continuing developments will help further improve performance and 450 

extract additional data from the images.  451 

 452 

453 
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